Choosing a Clustering: An A Posteriori Method for Social Networks
نویسنده
چکیده
Selecting an appropriate method of clustering for network data a priori can be a frustrating and confusing process. To address the problem we build on an a posteriori approach developed by Grimmer and King (2011) that compares hundreds of possible clustering methods at once through concise and intuitive visualization. We adapt this general method to the context of social networks, extend it with additional visualization features designed to enhance interpretability, and describe its principled use, outlining steps for selecting a class of methods to compare, interpreting visual output, and making a final selection. The interactive method, implemented in R, is demonstrated using Zachary’s karate club, a canonical dataset from the network literature.
منابع مشابه
An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInterference-Aware and Cluster Based Multicast Routing in Multi-Radio Multi-Channel Wireless Mesh Networks
Multicast routing is one of the most important services in Multi Radio Multi Channel (MRMC) Wireless Mesh Networks (WMN). Multicast routing performance in WMNs could be improved by choosing the best routes and the routes that have minimum interference to reach multicast receivers. In this paper we want to address the multicast routing problem for a given channel assignment in WMNs. The channels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Social Structure
دوره 15 شماره
صفحات -
تاریخ انتشار 2014